Efficient Block-wise KDM Secure Public-Key Encryption

Tal Malkin
Isamu Teranishi
Moti Yung

KDM

- Also known as Circular Encryption
 - When the messages can depend on the secret key).

- Definition [D.E. Knuth]:
 - Circular: See under Circular

Key Dependent Message Security (KDM[Func])

Func : Set of fucntions $f : \{SecretKeys\}^n \rightarrow \{Messages\}$

For any function f of Func and any i,

$$\operatorname{Enc}_{\operatorname{pk}_{i}}(f(\operatorname{sk}_{1},\cdots;\operatorname{sk}_{n})) \simeq \operatorname{Enc}_{\operatorname{pk}_{i}}(0).$$

Known schemes are inefficient (secure mult.party comp) or bitwise PKE.

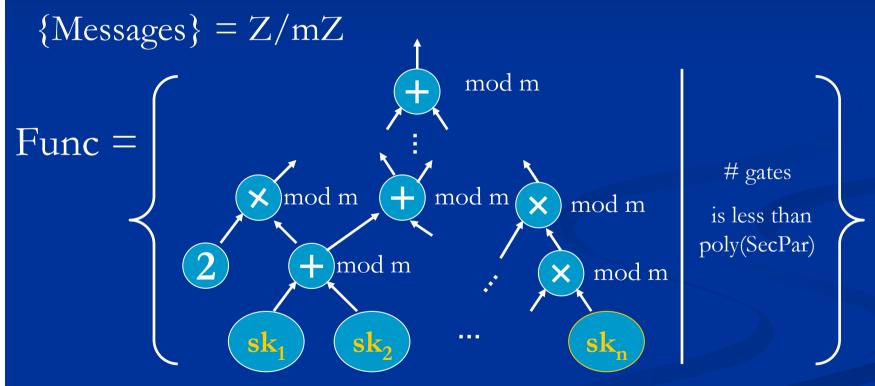
And

- Used PK encryption are block wise M=string of bits (not bitwise: M is a bit) in implementations I have seen.
- So efficiency is an issue
- Also: extending the set of functions over keys is an issues

■ These were mentioned as open problems in the first talk of the conference.

Proposed Scheme

We propose the first efficient and blockwise KDM secure PKE such that



I.e. Set of polysize "modular arithmetic" circuits

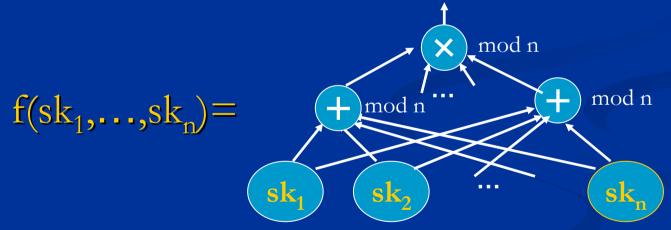
with gates + mod m and

Example of a function.

$$f(sk_1,...,sk_n) = (sk_1 + ... + sk_n)^n \mod n$$

$$= \sum_{\epsilon_1 + ... + \epsilon_n = n} sk_1^{\epsilon_1} ... sk_n^{\epsilon_n} \mod n.$$

is an element of our Func because



Our Func is the set of polynomials

which can have exponential number of terms.

Proposed Scheme

System param N: RSA modulus mutip of two strong primes.

$$pk=(g,h)$$
, $sk=\log_g h$
 $Enc_{pk}(M)$

$$= (g^{r_0}, h^{r_0}g^{r_1}, \dots, h^{r_{d-1}}g^{r_d}, (1+N)^M h^{r_d}) \mod N^2$$

Our scheme is KDM secure for any f of Func with degree d at most under the DCR assumption.

Comparison

	Blockwise?	Func	Efficiency
[BHHO08] [ACPS09]	No	Linear	Ineffient
[BHHI 10]	No	Bounded Boolian Circuit	Ineffient
[BGK09] [BG10]	No	Polymomial of bits, deg =O(1)	Inefficient
Ours	Yes	Polysize Modular Arithmetic Circuit	Efficient.

Thank you.

Appendix

References

- [ACPS09] Applebaum, Cash, Peitkert, Sahai: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. Crypto 2009.
- [BG10] Brakerski, Goldwasser:
 Circular and Leakage Resilient Public-Key Encryption
 Under Subgroup Indistinguishability. Crypto 2010.
- [BGK09] Brakerski, Goldwasser, Kalai:

 Circular-Secure Encryption Beyond Affine Functions eprint.
- [BHHI10] Barak, Haitner, Hofheinz, Ishai: Bounded Key-Dependent Message Security. Eurocrypt 2010.
- [BHHO08] Boneh, Halevi, Hamburg, Ostrovsky:

 Circular-Secure Encryption from Decision Diffie-Hellman.

 Crypto 2008
- [CCS09] Camenisch, Chandran, Shoup:
 A Public Key Encryption Scheme Secure against Key Dependent
 Chosen Plaintext and Adaptive Chosen Ciphertext Attacks. Eurocrypt 2009

Idea Behind Proof (1)

Simulator sets

$$sk_1 = x + \alpha_1, \ldots, sk_n = x + \alpha_n$$

where x : unknown exponent.

 α_i : random element selected by the simulator.

Because f of Func is a polynomial, f can be written as

$$f(sk_1,...,sk_n) = a_0 + a_1x + ... a_nx^n \mod N.$$

Lemma : $a_0,...,a_n$ can be computed in polytime if f is a polysize modular arithmetic circuit.

Idea Behind Proof (2)

T=1+N

$$(\underbrace{g^{r_1}, h^{r_1}g^{r_2}, \dots, h^{r_{d-1}}g^{r_d}, T^{f(x)}h^{r_d}}_{reduced. reduced.}) \mod N^2$$

$$(T^{a_0}g^{r_0}, T^{a_1}h^{r_0}g^{r_1}, \dots, T^{a_{d-1}}h^{r_{d-1}}g^{r_d}, T^{a_d}h^{r_d}) \mod N^2$$